License Plate Detection and Recognition Using Deeply Learned Convolutional Neural Networks
نویسندگان
چکیده
This work details Sighthounds fully automated license plate detection and recognition system. The core technology of the system is built using a sequence of deep Convolutional Neural Networks (CNNs) interlaced with accurate and efficient algorithms. The CNNs are trained and fine-tuned so that they are robust under different conditions (e.g. variations in pose, lighting, occlusion, etc.) and can work across a variety of license plate templates (e.g. sizes, backgrounds, fonts, etc). For quantitative analysis, we show that our system outperforms the leading license plate detection and recognition technology i.e. ALPR on several benchmarks. Our system is available to developers through the Sighthound Cloud API at https://www.sighthound.com/products/cloud
منابع مشابه
Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملAutomatic License Plate Detection Using Deep Learning Techniques
Automatic License Plate Recognition (ALPR) systems capture a vehicle‟s license plate and recognize the license number and other required information from the captured image. ALPR systems have numbers of significant applications: law enforcement, public safety agencies, toll gate systems, etc. The goal of these systems is to recognize the characters and state on the license plate with high accur...
متن کاملReading Car License Plates Using Deep Convolutional Neural Networks and LSTMs
In this work, we tackle the problem of car license plate detection and recognition in natural scene images. Inspired by the success of deep neural networks (DNNs) in various vision applications, here we leverage DNNs to learn high-level features in a cascade framework, which lead to improved performance on both detection and recognition. Firstly, we train a 37-class convolutional neural network...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1703.07330 شماره
صفحات -
تاریخ انتشار 2017